Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMC Med ; 20(1): 359, 2022 10 21.
Article in English | MEDLINE | ID: covidwho-2079420

ABSTRACT

BACKGROUND: The severe fever with thrombocytopenia syndrome disease (SFTS), caused by the novel tick-borne SFTS virus (SFTSV), was listed among the top 10 priority infectious disease by World Health Organization due to the high fatality rate of 5-30% and the lack of effective antiviral drugs and vaccines and therefore raised the urgent need to develop effective anti-SFTSV drugs to improve disease treatment. METHODS: The antiviral drugs to inhibit SFTSV infection were identified by screening the library containing 1340 FDA-approved drugs using the SFTSV infection assays in vitro. The inhibitory effect on virus entry and the process of clathrin-mediated endocytosis under different drug doses was evaluated based on infection assays by qRT-PCR to determine intracellular viral copies, by Western blot to characterize viral protein expression in cells, and by immunofluorescence assays (IFAs) to determine virus infection efficiencies. The therapeutic effect was investigated in type I interferon receptor defective A129 mice in vivo with SFTSV infection, from which lesions and infection in tissues caused by SFTSV infection were assessed by H&E staining and immunohistochemical analysis. RESULTS: Six drugs were identified as exerting inhibitory effects against SFTSV infection, of which anidulafungin, an antifungal drug of the echinocandin family, has a strong inhibitory effect on SFTSV entry. It suppresses SFTSV internalization by impairing the late endosome maturation and decreasing virus fusion with the membrane. SFTSV-infected A129 mice had relieving symptoms, reduced tissue lesions, and improved disease outcomes following anidulafungin treatment. Moreover, anidulafungin exerts an antiviral effect in inhibiting the entry of other viruses including SARS-CoV-2, SFTSV-related Guertu virus and Heartland virus, Crimean-Congo hemorrhagic fever virus, Zika virus, and Herpes simplex virus 1. CONCLUSIONS: The results demonstrated that the antifungal drug, anidulafungin, could effectively inhibit virus infection by interfering with virus entry, suggesting it may be utilized for the clinical treatment of infectious viral diseases, in addition to its FDA-approved use as an antifungal. The findings also suggested to further evaluate the anti-viral effects of echinocandins and their clinical importance for patients with infection of viruses, which may promote therapeutic strategies as well as treatments and improve outcomes pertaining to various viral and fungal diseases.


Subject(s)
Anidulafungin , Bunyaviridae Infections , Virus Diseases , Animals , Mice , Anidulafungin/pharmacology , Anidulafungin/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Bunyaviridae Infections/drug therapy , Clathrin , Receptor, Interferon alpha-beta , SARS-CoV-2 , Viral Proteins , Virus Diseases/drug therapy
2.
BMC Microbiol ; 22(1): 204, 2022 08 20.
Article in English | MEDLINE | ID: covidwho-2038659

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne phlebovirus with a high fatality rate of 12-30%, which has an expanding endemic and caused thousands of infections every year. Central nervous system (CNS) manifestations are an important risk factor of SFTS outcome death. Further understanding of the process of how SFTSV invades the brain is critical for developing effective anti-SFTS encephalitis therapeutics. We obeserved changes of viral load in the brain at different time points after intraperitoneal infection of SFTSV in newborn C57/BL6 mice. The virus invaded the brain at 3 h post-infection (hpi). Notably, the viral load increased exponentially after 24 hpi. In addition, it was found that in addition to macrophages, SFTSV infected neurons and replicated in the brain. These findings provide insights into the CNS manifestations of severe SFTS, which may lead to drug development and encephalitis therapeutics.


Subject(s)
Bunyaviridae Infections , Encephalitis , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Thrombocytopenia , Animals , Animals, Newborn , Brain , Bunyaviridae Infections/epidemiology , Mice , Neurons , Phlebovirus/physiology , Thrombocytopenia/epidemiology
3.
Int J Infect Dis ; 122: 38-45, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2036061

ABSTRACT

OBJECTIVES: Selenium deficiency can be associated with increased susceptibility to some viral infections and even more severe diseases. In this study, we aimed to examine whether this association applies to severe fever with thrombocytopenia syndrome (SFTS). METHOD: An observational study was conducted based on the data of 13,305 human SFTS cases reported in mainland China from 2010 to 2020. The associations among incidence, case fatality rate of SFTS, and crop selenium concentration at the county level were explored. The selenium level in a cohort of patients with SFTS was tested, and its relationship with clinical outcomes was evaluated. RESULTS: The association between selenium-deficient crops and the incidence rate of SFTS was confirmed by multivariate Poisson analysis, with an estimated incidence rate ratio (IRR, 95% confidence interval [CI]) of 4.549 (4.215-4.916) for moderate selenium-deficient counties and 16.002 (14.706-17.431) for severe selenium-deficient counties. In addition, a higher mortality rate was also observed in severe selenium-deficient counties with an IRR of 1.409 (95% CI: 1.061-1.909). A clinical study on 120 patients with SFTS showed an association between serum selenium deficiency and severe SFTS (odds ratio, OR: 2.94; 95% CI: 1.00-8.67) or fatal SFTS (OR: 7.55; 95% CI: 1.14-50.16). CONCLUSION: Selenium deficiency is associated with increased susceptibility to SFTS and poor clinical outcomes.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Selenium , Severe Fever with Thrombocytopenia Syndrome , Thrombocytopenia , China/epidemiology , Fever/epidemiology , Humans , Thrombocytopenia/epidemiology
4.
Epidemiol Infect ; 150: e131, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-2000836

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) virus has caused a large number of human infections since discovered in 2009. This study elucidated epidemiological features and fatal risk factors of SFTS cases accumulated up to ten years in Taizhou, a coastal prefecture of Zhejiang Province in Eastern China. A total of 188 hospitalised SFTS cases (including 40 deaths) reported to Taizhou Center for Disease Control and Prevention (CDC) during 2011-2020 were enrolled in the study. In the past decade, the annual incidence of SFTS increased over the years (P < 0.001) along with an expanding epidemic area, and the case fatality of hospitalised cases has remained high (21.3%). Although most cases occurred in hilly areas, a coastal island had the highest incidence and case fatality. The majority of cases were over the age of 60 years (72.3%), and both incidence and case fatality of SFTS increased with age. Multivariate logistic regression analysis showed that age (OR 7.47, 95% CI 1.32-42.33; P = 0.023), and haemorrhagic manifestations including petechiae (OR 7.76, 95% CI 1.17-51.50; P = 0.034), gingival haemorrhage (OR 5.38, 95% CI 1.25-23.15; P = 0.024) and melena (OR 5.75, 95% CI 1.18-28.07; P = 0.031) were significantly associated with the death of SFTS cases. Five family clusters identified were farmers, among four of which the index patients were female with a history of hypertension. Based on the study, age is a critical risk factor for incidence and case fatality of SFTS. With an increased annual incidence over the last ten years, SFTS remains a public health threat that should not be ignored. Further study is needed to look at the natural foci in the coastal islands.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Thrombocytopenia , China/epidemiology , Female , Fever/epidemiology , Humans , Male , Middle Aged , Risk Factors , Thrombocytopenia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL